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ABSTRACT

Spectral Domain Technique has been applied to
analyze multiconductor, asymmetric slow-wave
microstrip lines. It is observed that slow-wave
factor of odd mode of coupled microstrip lines
may be equal to or larger than that of even mode
under appropriate conditions. This presents the
flexibility to realize a large variety of passive
cmponents, such as directional coupler, phase
shifter, power combiner/divider.

INTRODUCTION

The purpose of this research is to present
detailed analysis of multiconductor, asymmetric
slow-wave microstrip lines based on Spectral
Domain Techniquel[ll, These structures are
expected to realize a wide variety of passive
components such as directional coupler, power
divider/combiner, phase shifter and have large
impact on monolithic microwave integrated
circuits. We have discovered some interesting
characteristics about three-layer substrate. The
slow-wave factor of odd mode for two-strip
coupled microstrip lines can be equal to or
larger than that of even mode.

A number of analytical studies have been reported
on several kinds of planar slow-wave
structures[2]-[7]. Simplified parallel plate
structure were first examined [2],[3], and other
studies based on hybrid-mode approach have shown
the applicability of several techniques to the
analysis of MIS microstrip lines, MIS coplanar
waveguides{51,[6]. However, no theoretical
results based on full-wave analysis have been
reported on multiconductor, asymmetric slow-wave
transmission lines except the coupled microstrip
lines on two-layer substrate[7]. With a growing
interest in very high speed digital integrated
circuits, the thorough knowledge of the
properties of various planar transmission lines
on semiconductor substrate is essential in order
to take full advantage of the inherent speed
capability of the devices[8], besides the slow-
wave phenomena have shown a potential to reduce
the dimension of distributed components
substantially so that the realization of novel
integrated circuits for microwave frequency can
be expected.
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NUMERICAL RESULTS AND DISCUSSION

The structure in Fig. 1 can model the slow-wave
structure of MIS configuration as well as of the
Schottky contact type. In the present case, the
doped region of semiconductor substrate is
treated as a dielectric layer with finite
resistivity, which is included in the analysis by
the complex permittivity for the layer. The
reason why we can apply the present model is that
most of the field lines concentrate under and
between strip conductors and field far away from
the strip conductors has very little effect on
propagation characteristics.

Since the three-layer substrate is the most
important and common structure used to fabricate
GaAs MESFET, it is necessary to study the
characteristics of this structure. We have found
a very interesting phenomenon about the slow-wave
factor in this structure. Under some conditions,
the slow-wave factor of odd mode is larger than
that of even mode. In the conventional coupled
microstrip lines as well as in the coupled slow-
wave microstrip lines on two-layer substratel71],
the propagation constant of even mode is always
larger than that of even mode because of the
field distribution[12]. This new phenomenon can
be explained in Fig.2 and Fig.3. Fig.2 shows the
slow-wave factor versus resistivity. Fig. 3
shows the slow-wave factor for different values
of thickness of semi-insulating layer. When the
resistivity is high, corresponding to lossless
coupled microstrip lines, the propagation
constant of even mode is larger than that of odd
mode. However, when the resistivity becomes
smaller, the slow-wave factor of odd mode
increases more than that of even mode in the
three-layer structure. The origim of this
particular characteristics comes from the energy
transfer across the interface between lossy layer
and insulating layer. In the even mode, electric
field tends to penetrate into the whole
substrate. However, the thickness of lossy layer
in three-layer structure is usually very thin.
The major portion of electric emergy will be
stored in both thin insulating and semi-
insulating layers. On the contrary, most of the
electric energy is stored in thin insulating
layer in two-layer structure. In Fig.3 we can
see two intersection points. When the thickness
of semi-insulating layer become very thin,
corresponding to two-layer structure, the slow-
wave factor of even mode becomes larger than that
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of odd mode. On the other hand, when the
thickness of semi-insulating layer becomes thick
enough, the propagation constant of odd mode will
be smaller than that of even mode, as in the
conventional coupled microstrip lines. Fig.2 and
Fig.3 show another feature of coupled slow-wave
microstrip lines. The directional coupler with
the same propagation constants of even and odd
modes can be realized with parameters
corresponding to these intersection points.

At the fixed resistivity of 0.01 Q-cm, the three-
layer structure is studied by varying frequency.
The resulted are shown in Figs.4-6. It is
observed that the slow-wave factor of odd mode is
larger than that of even mode for most part of
frequency range.

The present program can handle asymmetric
situation also. Fig.7 shows the propagation
characteristics of two-strip asymmetric slow-wave
microstrip lines. Although the propagation
constant only changes 10%, the real part of
characteristic impedance changes more than 50%.
We can use this characteristic to adjust the
impedance level of the circuit.

Finally the behavior of propagation
characteristics for three-conductor and four-
conductor on three-layer substrate are also
investigated. The calculated results for three-
conductor are shown in Fig.8. We use + and - to
indicate the direction of J,» The meaning of ++
is that the amplitude of the conductor is
substantially larger tham that of +. The
relationship between -~ and - are the same. As
in the coupled slow-wave microstrip lines
structure, all-positive potential situation has
the lowest propagation constant among all the
fundamental modes.

CONCLUSION

The characteristics of multiconductor, asymmetric
slow-wave microstrips have been investigated
thoroughly with Spectral Domain Technique.
Characteristics of these structures have been
studied for different values of structure
parameters such as thickness and resistivity of
the doped semiconductor layer. For instance, it
has been found that slow-wave factors of odd mode
for two-strip coupled microstrip lines can be
equal to or larger than that of even mode. Since
the slow-wave microstrip lines described here
have structure similar to that of GaAs MESFET,
they may be advantageously used in realizing
physically small passive components such as
directional coupler, and phase shifter for MMIC.
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